194 research outputs found

    Targeted KRAS Mutation Assessment on Patient Tumor Histologic Material in Real Time Diagnostics

    Get PDF
    BACKGROUND: Testing for tumor specific mutations on routine formalin-fixed paraffin-embedded (FFPE) tissues may predict response to treatment in Medical Oncology and has already entered diagnostics, with KRAS mutation assessment as a paradigm. The highly sensitive real time PCR (Q-PCR) methods developed for this purpose are usually standardized under optimal template conditions. In routine diagnostics, however, suboptimal templates pose the challenge. Herein, we addressed the applicability of sequencing and two Q-PCR methods on prospectively assessed diagnostic cases for KRAS mutations. METHODOLOGY/PRINCIPAL FINDINGS: Tumor FFPE-DNA from 135 diagnostic and 75 low-quality control samples was obtained upon macrodissection, tested for fragmentation and assessed for KRAS mutations with dideoxy-sequencing and with two Q-PCR methods (Taqman-minor-groove-binder [TMGB] probes and DxS-KRAS-IVD). Samples with relatively well preserved DNA could be accurately analyzed with sequencing, while Q-PCR methods yielded informative results even in cases with very fragmented DNA (p<0.0001) with 100% sensitivity and specificity vs each other. However, Q-PCR efficiency (Ct values) also depended on DNA-fragmentation (p<0.0001). Q-PCR methods were sensitive to detect<or=1% mutant cells, provided that samples yielded cycle thresholds (Ct)<29, but this condition was met in only 38.5% of diagnostic samples. In comparison, FFPE samples (>99%) could accurately be analyzed at a sensitivity level of 10% (external validation of TMGB results). DNA quality and tumor cell content were the main reasons for discrepant sequencing/Q-PCR results (1.5%). CONCLUSIONS/SIGNIFICANCE: Diagnostic targeted mutation assessment on FFPE-DNA is very efficient with Q-PCR methods in comparison to dideoxy-sequencing. However, DNA fragmentation/amplification capacity and tumor DNA content must be considered for the interpretation of Q-PCR results in order to provide accurate information for clinical decision making

    The ratio of SRPK1/SRPK1a regulates erythroid differentiation in K562 leukaemic cells

    Get PDF
    AbstractSRPK1, the prototype of the serine/arginine family of kinases, has been implicated in the regulation of multiple cellular processes such as pre-mRNA splicing, chromatin structure, nuclear import and germ cell development. SRPK1a is a much less studied isoform of SRPK1 that contains an extended N-terminal domain and so far has only been detected in human testis. In the present study we show that SRPK1 is the predominant isoform in K562 cells, with the ratio of the two isoforms being critical in determining cell fate. Stable overexpression of SRPK1a induces erythroid differentiation of K562 cells. The induction of globin synthesis was accompanied by a marked decrease in proliferation and a significantly reduced clonogenic potential. Small interfering RNA-mediated down-regulation of SRPK1 in K562 cells results similarly in a decrease in proliferative capacity and induction of globin synthesis. A decreased SRPK1/SRPK1a ratio is also observed upon hemin/DMSO-induced differentiation of K562 cells as well as in normal human erythroid progenitor cells. Mass spectrometric analysis of SRPK1a-associated proteins identified multiple classes of RNA-binding proteins including RNA helicases, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, and mRNA-associated proteins. Several of the SRPK1a-copurifying proteins have been previously identified in ribosomal and pre-ribosomal complexes, thereby suggesting that SRPK1a may play an important role in linking ribosomal assembly and/or function to erythroid differentiation in human leukaemic cells

    MMP9 but Not EGFR, MET, ERCC1, P16, and P-53 Is Associated with Response to Concomitant Radiotherapy, Cetuximab, and Weekly Cisplatin in Patients with Locally Advanced Head and Neck Cancer

    Get PDF
    Concomitant administration of radiotherapy with cisplatin or radiotherapy with cetuximab appear to be the treatment of choice for patients with locally advanced head and neck cancer. In the present retrospective analysis, we investigated the predictive role of several biomarkers in an unselected cohort of patients treated with concomitant radiotherapy, weekly cisplatin, and cetuximab (CCRT). We identified 37 patients treated with this approach, of which 13 (35%) achieved a complete response and 10 (27%) achieved a partial response. Severe side effects were mainly leucopenia, dysphagia, rash, and anemia. Tumor EGFR, MET, ERCC1, and p-53 protein and/or gene expression were not associated with treatment response. In contrast, high MMP9 mRNA expression was found to be significantly associated with objective response. In conclusion, CCRT is feasible and active. MMP9 was the only biomarker tested that appears to be of predictive value in cetuximab treated patients. However, this is a hypothesis generating study and the results should not be viewed as definitive evidence until they are validated in a larger cohort

    HER2 and TOP2A in high-risk early breast cancer patients treated with adjuvant epirubicin-based dose-dense sequential chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HER2 and TOP2A parameters (gene status, mRNA and protein expression) have individually been associated with the outcome of patients treated with anthracyclines. The aim of this study was to comprehensively evaluate the prognostic/predictive significance of the above parameters in early, high-risk breast cancer patients treated with epirubicin-based, dose-dense sequential adjuvant chemotherapy.</p> <p>Methods</p> <p>In a series of 352 breast carcinoma tissues from patients that had been post-operatively treated with epirubicin-CMF with or without paclitaxel, we assessed HER2 and TOP2A gene status (chromogenic in situ hybridization), mRNA expression (quantitative reverse transcription PCR), as well as HER2 and TopoIIa protein expression (immunohistochemistry).</p> <p>Results</p> <p>HER2 and TOP2A amplification did not share the same effects on their downstream molecules, with consistent patterns observed in HER2 mRNA and protein expression according to HER2 amplification (all parameters strongly inter-related, p values < 0.001), but inconsistent patterns in the case of TOP2A. TOP2A gene amplification (7% of all cases) was not related to TOP2A mRNA and TopoIIa protein expression, while TOP2A mRNA and TopoIIa protein were strongly related to each other (p < 0.001). Hence, TOP2A amplified tumors did not correspond to tumors with high TOP2A mRNA or TopoIIa protein expression, while the latter were characterized by high Ki67 scores (p = 0.003 and p < 0.001, respectively). Multivariate analysis adjusted for nodal involvement, hormone receptor status, Ki67 score and HER2/TOP2A parameters revealed HER2/TOP2A co-amplification (21.2% of HER2 amplified tumors) as an independent favorable prognostic factor for DFS (HR = 0.13, 95% CI: 0.02-0.96, p = 0.046); in contrast, increased HER2/TOP2A mRNA co-expression was identified as an independent adverse prognostic factor for both DFS (HR = 2.41, 95% CI: 1.31-4.42, p = 0.005) and OS (HR = 2.83, 95% CI: 1.42-5.63, p = 0.003), while high TOP2A mRNA expression was an independent adverse prognostic factor for OS (HR = 2.06, 95% CI: 1.23-3.46, p = 0.006). None of the parameters tested was associated with response to paclitaxel.</p> <p>Conclusions</p> <p>This study confirms the favorable prognostic value of HER2/TOP2A co-amplification and the adverse prognostic value of high TOP2A mRNA expression extending it to the adjuvant treatment setting in early high-risk breast cancer. The strong adverse prognostic impact of high HER2/TOP2A mRNA co-expression needs further validation in studies designed to evaluate markers predictive for anthracyclines.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry <a href="http://www.anzctr.org.au/ACTRN12611000506998">ACTRN12611000506998</a>.</p

    Evaluation of the prognostic role of centromere 17 gain and HER2/topoisomerase II alpha gene status and protein expression in patients with breast cancer treated with anthracycline-containing adjuvant chemotherapy: pooled analysis of two Hellenic Cooperative Oncology Group (HeCOG) phase III trials

    Full text link
    corecore